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a  b  s  t  r  a  c  t

The  average  value  of  the  multivariate  selectivity  (SEL)  of  randomly  positioned  peaks  in  a multi-component
separation  is shown  to  equal  the  average  fraction  of  peaks  that  are  singlets,  as predicted  by statistical-
overlap  theory  (SOT).  This  equality  is the basis  for  proposing  a useful  metric,  specifically  the average
minimum  resolution  of  nearest-neighbor  peaks,  for the  performance  of comprehensive  two-dimensional
(2D)  separations.  Furthermore  this  metric  was  computed  both  without  ancillary  spectroscopic  informa-
tion  and  with  the  assistance  of  such  help,  specifically  multi-wavelength  UV–vis  spectra,  acquired  during
the separation.  Separations  are  simulated  with  randomly  positioned  peaks  over  wide  ranges  of  total
number  of peaks,  first-  and  second-dimension  peak  capacity,  dimensionless  first-dimension  sampling
time,  and  spectral  diversity.  The  specific  version  of  the  general  multivariate  selectivity  concept  that  is
used here  – identified  as  SEL  – gives  the  relative  precision  of quantification  when  using  the  PARAFAC
(parallel  factor  analysis)  method,  a popular  curve  resolution  algorithm.  The  SEL  values  of all  peaks  were
calculated,  averaged,  and  compared  to  the  predictions  of  SOT.  In the  absence  of  auxiliary  spectral  data,
the SEL-based  average  minimum  resolution  required  to  separate  two  peaks  in  a  2D separation  is 0.256,
compared  to  resolution  of 0.5  if no  chemometric  assistance  is  available.  This  was  found  to  be valid  over
a wide  range  of  conditions  and  is  essentially  independent  of  peak  crowding.  With  the  assistance  of the
spectral  data,  the  requisite  minimum  resolution  substantially  improves,  that  is, it  decreases,  especially
when  peak  crowding  is severe.  The  requisite  minimum  resolution  decreases  even  further,  up to  a  limit, as
the spectral  diversity  is increased.  In  contrast,  the  SEL-based  average  under-sampling  correction  factor  is

virtually  independent  of  the  presence  of  the  additional  spectral  data,  and  additionally  is about  the  same
as  calculated  with  SOT  from  the  average  number  of  maxima  in closely  analogous  simulations.  The  use
of selectivity  greatly  increases  the fraction  of peaks  that  are  singlets,  relative  to the  number  of  singlet
maxima,  especially  when  spectral  assistance  is  added.  The  insensitivity  of  the  under-sampling  correction
factor  to  either  the  use  of  selectivity  or added  spectral  data  simplifies  optimization  of  the  corrected  peak
capacity  in  on-line  comprehensive  2D  separations.
. Introduction

The popularity of multivariate analysis, e.g., the use of
bsorbance measurements at many wavelengths, has been accom-
anied by the development of various formalized metrics. One of
hese is selectivity. For traditional analytical methods, selectivity is
efined as the ratio of the slope of the calibration curve for the

arget analyte to the slope of the calibration curve for a speci-
ed interferent [1].  It is desirable to generalize this metric for use
ith multivariate methods, where multiple interferents occur and
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multiple sensors (e.g., wavelengths) are used. Lorber proposed a
metric for multivariate selectivity based on the net analyte signal
[2,3]. It is computed as that part of the target analyte signal that is
orthogonal to the total signal. The multivariate selectivity (or simply
selectivity) is the normalized net analyte signal, equaling that frac-
tion of the total signal that is unique to the analyte [2,4,5].  Thus,
the selectivity of a perfectly selective method is unity, whereas
that of a totally unselective method is zero. Selectivity measures
the expected accuracy and precision of an analysis, relative to one
where no interferents are present. For example, a target analyte
with a selectivity of 0.5 can be quantified with an accuracy and

precision only one-half as good as that in the absence of any inter-
ferents. The calculation assumes a fixed noise level throughout.

Recent studies have shown the suitability of such metrics for
selectivity for the characterization of the performance of multi-

dx.doi.org/10.1016/j.chroma.2011.06.086
http://www.sciencedirect.com/science/journal/00219673
http://www.elsevier.com/locate/chroma
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Fig. 1. Schematic illustration of net analyte signal and multivariate selectivity
value, SEL, for one-dimensional chromatography. (a) The gray plane indicates the
820 J.M. Davis et al. / J. Chroma

imensional chromatographic separations [6–8]. Our interest lies
n applying these metrics to assess various attributes of compre-
ensive two-dimensional liquid chromatography (LC × LC), with
nd without the benefits of auxiliary spectroscopic data, more
pecifically by use of a diode array detector (DAD). An attribute
f particular importance in characterizing the performance of
C × LC methods is the average resolution of nearest-neighbor
eaks. Although relationships between selectivity and resolution
ave been reported [6,9–11],  they were based only on small num-
ers of overlapping peaks. In contrast, a relationship based on the
artial overlap of hundreds of peaks could serve as a more represen-
ative measure of the effect of selectivity on the entire separation.
t would also be useful to know how the average resolution varies

ith the diversity of the auxiliary spectra.
Another characteristic of interest in 2D separations is the

xpected increase in first-dimension peak width due to the almost
navoidable problem of under-sampling the first-dimension efflu-
nt, prior to its injection into the second column. This effect is
uantified by a peak-broadening factor, which can be quite large
e.g., more than an eight-fold broadening [12]), with a concomitant
oss of peak capacity by the same factor [13]. Although in principle
he broadening factor is unique, its value varies with the model used
o regenerate the inherently Gauss-like first-dimension peaks from
he data obtained at the end of the second-dimension separation,
.g., as histograms [14], digital pulses [15], or linear interpolations
16–18]. This is so because a unique regeneration does not exist
hen under-sampled peaks do not satisfy the Nyquist theorem

16]. Since the multivariate selectivity is based on only the orthog-
nal part of the total analyte signal, no regeneration formalism
s required and the broadening factor that results from under-
ampling could well depend on the amount of help that comes from
he spectral data, as previously hypothesized by Potts et al. [19].

In the absence of additional spectral data, these attributes –
he average minimum resolution and the peak-broadening fac-
or – have been characterized in multi-component separations
16,20,21] by the use of statistical-overlap theory (SOT), which
escribes the expected amount of peak overlap in a large ensemble
f separations. In this work we will show the important unifying
esult that the SEL can be interpreted as the fractional singlet char-
cter of a peak. The average SEL of randomly positioned peaks is
qual to the fraction of singlet peaks (singlets) predicted by SOT. In
ight of this result, the average resolution and peak-broadening fac-
or were predicted from SEL values calculated from simulations of
omprehensive two-dimensional (2D) separations containing ran-
omly positioned peaks.

The effect of additional information provided by a DAD on these
ttributes was evaluated by randomly assigning UV–vis spectra to
hromatographic peaks from a pool of different UV–vis spectra.
lthough our interest is in LC × LC, with and without help from
AD, our methods are general; therefore, our results are relevant

o other comprehensive 2D separations and multi-sensor detection
ethods, e.g., GC × GC with mass-spectral detection.

. Theory

.1. Review of multivariate selectivity

Under the assumption that all analytes present in the unknown
amples are also present at known concentrations in calibration
amples, the value of the multivariate selectivity SEL of the ith peak
n a 2D chromatogram is [22]
EL = [(A1
T A1 ∗ A2

T A2)
−1

]
−1/2

i,i (1)

here A1 and A2 are matrices containing the first- and
econd-dimension chromatographic peak profiles for each peak,
(hyper)plane of all signals except for the analyte. The analyte vector is at an angle
�  to that plane, such that the SEL value is given as sin �. (b) Relationship among
resolution (Rs), angle (�), and selectivity (SEL) for two peaks.

respectively. In Eq. (1),  ‘*’ indicates the Hadamard or element-wise
matrix product, ‘T’ indicates the matrix transpose, ‘−1’ indicates
the matrix inverse, and ‘i, i’ indicates the ith diagonal element of
the resultant matrix. This calculation is based on the formalism
of Messick et al. [9,22],  which determines the selectivity of the
PARAFAC algorithm. Eq. (1) can be extended to include additional
spectroscopic information by [22]

SEL = [(A1
T A1 ∗ A2

T A2 ∗ A3
T A3)

−1
]
−1/2

i,i (2)

where A3 is a matrix containing the spectra, e.g., UV–vis or mass
spectra, of all chromatographic profiles in A1 and A2. In this paper,
SEL is calculated only as a metric: no curve resolution is actually
made.

As pointed out previously, the SEL value corresponds to that
part of the signal of interest that is orthogonal to the signals for
all other peaks that contribute to the overall signal. This is sim-
ply illustrated using the vector interpretation of SEL based on the
formalism of Messick et al. [9].  As shown in Fig. 1a, the vector repre-
senting an analyte signal can be decomposed into two vectors, one
that lies in a (hyper)plane spanned by the vectors representing all
other analyte signals, and a second vector – the net analyte signal –
that is orthogonal to this (hyper)plane. Only the net analyte signal
carries unique analyte information, and the magnitude of its asso-
ciated metric of multivariate selectivity, SEL, equals the sine of the
angle between the analyte vector and the (hyper)plane. To illustrate
the meaning and significance of SEL, we  use a simulation of two

overlapped peaks in one-dimensional chromatography, as shown
in Fig. 1b. Here we show two chromatographic peaks with vary-
ing degrees of overlap, whose resolutions range from 0.1 to 1.5. If
each peak was described by 100 points, then we  could also describe
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Fig. 2. Illustration of the effect of added spectral information on the value of SEL.
This  figure shows the increase in selectivity provided for a chromatogram with two
peaks having a resolution of 0.1 and SEL of 0.277 (top panel), upon the addition
of  spectral information. The squared correlation coefficient R2 and SEL values are
J.M. Davis et al. / J. Chroma

ach peak by a vector in a 100-dimensional space. Reducing this
pace to two dimensions for ease of visualization, we can show the
orresponding angle between the two different chromatographic
eaks as the angle between the two vectors. The vector component
f the analyte signal that is not selective lies in the (hyper)plane;
he selective vector component for the analyte of interest lies per-
endicular to it (see Fig. 1a). As the resolution of the two peaks
ecreases in Fig. 1b, the vectors become more oriented in the same
irection (i.e., each carries less unique information relative to the
ther), the angle between them decreases, and SEL decreases. Thus
arge SEL values are associated with well resolved peaks, and small
EL values are associated with poorly resolved peaks. In Fig. 1b,
oth peaks have the same SEL value, but in multi-component sep-
rations different peaks will have different SEL values depending
n the amount of peak overlap. It should be pointed out that the
EL value is independent of the noise level and the number of data
oints in each peak (except in the limit of under-sampling).

The geometric interpretation of SEL shown in Fig. 1 is not
hanged on addition of subsequent dimensions of data; only the
umerical value of SEL is changed. The effect of using spectral infor-
ation to aid in the resolution of the signals (e.g., LC-DAD) is shown

n Fig. 2. Here a pair of severely overlapped chromatographic peaks
Rs = 0.1, SEL = 0.277, top of figure) is used to illustrate the improve-

ent in SEL upon using DAD detection. Four different spectral pairs
shown on the right in the figure) are shown with SEL values of the
pectral information alone ranging from 0.227 to 0.541. The SEL val-
es for the combined information are reported as well, where the
EL values range from 0.384 to 0.589. It can be seen that the largest
mprovement in SEL is seen when the SEL values of the individual
echniques are similar, at least for the two-component case.

.2. Review of SOT

Consider a series of comprehensive 2D separations with first and
econd dimension durations 1D and 2D. On average they contain m̄
andomly positioned peaks having (prior to sampling) first- and
econd-dimension standard deviations 1� and 2�. Upon sampling,
he average first-dimension peak width is effectively increased by

 factor known as 〈ˇ〉 [14]. The SOT prediction of the expected
umber of singlets s in these separations is [23]

 = m̄p1 (3)

here p1 is the singlet probability [23]

1 = wip1,i + wep1,e + wcp1,c (4)

In Eq. (4),  pl,i, pl,e, and pl,c are the independent probabilities of
orming singlet peaks in the interior (i), edge (e), and corner (c)
egions of a rectangular 2D space. They are given elsewhere [23]
s functions of the saturation ˛. The saturation is a metric of peak
rowding, which in comprehensive 2D separations is [16]

 = �m̄(R∗
s )2

4n′
c,2D

(5)

here Rs
* is the average minimum resolution sufficient to separate

 singlet from its nearest-neighbor peak and n′
c,2D is the corrected

D peak capacity, i.e., the traditional 2D peak capacity [24–26] cor-
ected for the sampling-induced peak broadening [13]

′
c,2D =

1nc
2nc〈

ˇ
〉 (6a)

In Eq. (6a), 1n and 2n are the conventional (uncorrected) first-
c c

nd second-dimension peak capacities at unit resolution

nc =
1D

41�
(6b)
shown for each pair of spectra on the right, and the SEL of the combined information
is  shown to the left of the spectra.

2nc =
2D

42�
(6c)

The factors wi, we, and wc in Eq. (4) are the fractions of the
rectangular 2D space associated with the interior, edge, and corner
regions. They have been expressed elsewhere in geometric terms
[23] but also can be written as

wi = 1 − 2R∗
s

(〈
ˇ
〉

1nc
+ 1

2nc

)
+ 4(R∗

s )2

n′
c,2D

(7a)

we = 2R∗
s

(〈
ˇ
〉

1nc
+ 1

2nc

)
− 8(R∗

s )2

n′
c,2D

(7b)
wc = 4(R∗
s )2

n′
c,2D

(7c)
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Table 1
Combinations of m̄, 1nc , and 2nc used to determine average minimum resolution Rs

*

as function of saturation ˛.

m̄ 1nc
2nc m̄/(1nc

2nc)a 1�/2�b

100 40 80 0.03125 2
100 40 40 0.0625 1
100 40 20 0.125 0.5
100 20 20 0.25 1
100 20 6.67 0.75 0.33
100 20 3.33 1.5 0.17
100 20 2 2.5 0.1
100 10 2.86 3.5 0.29
200 20 20 0.5 1
200 10 20 1 2
200 10 10 2 1
200 5 20 2 4
200 3.33 20 3 6
200 2.5 20 4 8
200 6.67 6.67 4.5 1
200 2 20 5 10
200 1.67 20 6 12
200 5 5 8 1
300 6.55 6.55 7 1
300 2.51 12.57 9.5 5
300 15.49 1.55 12.5 0.1
400 6.03 6.03 11 1
400 11.95 2.39 14 0.2
400 1.61 16.06 15.5 10

0.001. For each combination of m̄, 1nc, 2nc, and ts/1�, the simulations
were repeated 50 times with different random peak coordinates.
The SEL values of peaks in each 2D chromatogram were computed

Table 2
Combinations of 1nc and 2nc used to determine average peak-broadening factor 〈ˇ〉.

1nc
2nc

1�/2�a

20 160 8
80  40 0.5
80  20 0.25
40  40 1
822 J.M. Davis et al. / J. Chroma

Eqs. (3)–(7a–c) are exact as long as 2R∗
s

〈
ˇ
〉

/1nc and 2R∗
s /2nc

re less than one [23]. They correct for the “edge effect”, that is,
he reduced probability of peak overlap that exists near the edges
nd corners (i.e., the boundaries) of a rectangular 2D separation
23]. The edge effect exists because there are no peaks outside the
oundaries available to overlap with peaks just inside and near the
oundaries [27]. In the present study, the edge effect can be appre-
iable, especially when 1nc is small and the sampling rate is slow,
ausing peaks to become very elongated in the first dimension.
he edge effect becomes negligible as 1nc and 2nc become increas-
ngly large, with weight wi approaching one, weights we and wc

pproaching zero, and Eq. (4) approaching the asymptotic result
28]

1,i = exp(−4˛) (8)

Eq. (8) is the classic equation for the singlet probability in a hypo-
hetical 2D separation in a plane of infinite extent, i.e., an infinite
raditional 2D peak capacity.

.3. Connection between SEL and SOT

In accordance with our earlier discussion, a vector representing
he signal of an analyte peak can be resolved into two components.
ne component lies in the (hyper)plane spanned by vectors rep-

esenting signals from all other peaks, and the other is orthogonal
o the (hyper)plane. With vector mathematics, the component of
he analyte signal in the hyper(plane) can be expressed by com-
ining vectors representing signals from all other peaks. In other
ords, this part of the analyte signal overlaps with other signals.
hromatographically, it behaves as a peak in a multiplet. In con-
rast, the orthogonal part of the analyte signal does not overlap
ith other peak signals; it behaves like a singlet peak of a single

hemical species.
By this interpretation, all peaks in chromatographic separations

ave both fractional singlet and multiplet characters.  Furthermore,
n our view, the fractional singlet character of any peak equals SEL.
learly a pure singlet peak would then have SEL equal to unity
hereas a badly overlapped peak would have a much lower SEL.

his is consistent with the variation of SEL with chromatographic
esolution, as shown in Fig. 1b. It follows that the expected frac-
ional singlet character of the entire separation is the average
electivity 〈SEL〉, taken as an average of the SEL values of all peaks.
hus, for randomly positioned peaks in a multi-component sep-
ration, this closely corresponds to the singlet probability p1, Eq.
4)

SEL
〉

≈ p1 = s

m̄
(9)

here the final identity comes from Eq. (3).  Eq. (9) is the central
perating premise of this work.

.4. Protocol

Our computational protocol determines Rs
* and 〈ˇ〉 indepen-

ently. First, the relationship between the average minimum
esolution Rs

* and saturation  ̨ is established by using SOT to inter-
ret the average selectivities 〈SEL〉 from simulated comprehensive
D separations so rapidly sampled that 〈ˇ〉 ≈ 1; thus, all parame-
ers but Rs

* are known. Second, this  ̨ − Rs
* relationship is used to

stablish 〈ˇ〉 by using SOT to interpret 〈SEL〉 values from simulations
f under-sampled separations. In these simulations, all parameters

ut 〈ˇ〉 are known. The influence of the DAD data is evaluated by
andomly assigning UV–vis spectra to different peaks. The amount
f additional spectroscopic data is varied by changing the number
f distinct spectra available to be assigned to the different peaks.
a Equal to effective saturation at 〈ˇ〉 = 1 (see Eq. (10)).
b Equal to 2nc/1nc .

Thus no spectral help is provided when all chromatographic peaks
share a single spectrum.

3. Procedures

3.1. Simulations

Comprehensive 2D separations of m̄ peaks (100 ≤ m̄ ≤ 400)
were simulated based on equal-height Gaussian profiles for both
the first- and second-dimension peaks. Uniformly random reten-
tion times were distributed over the durations, 1D = 2D = 0.8, and
standard deviations 1� and 2� were determined by 1nc and 2nc

values in Tables 1 and 2, and by Eqs. (6b) and (6c). Equal-
height chromatographic peaks were used in this study, even
though peak heights in multi-component separations often have an
exponential-like [29–33] or log–normal [34] distribution, because
the multivariate-selectivity calculations are based on peaks nor-
malized to a vector length of one. The first-dimension profiles
(contained in matrix A1) were generated by integrating sections
of the first-dimension Gaussian over sampling times of duration
ts and dividing by ts, with the times at the interval centers. The
second-dimension profiles (contained in matrix A2) were simply
the simulated Gaussian peaks, with points spaced at intervals of
20  40 2
80 10 0.125
20  20 1

a Equal to 2nc/1nc .
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Fig. 3. (a) and (b) Graphs of observed frequency of occurrence f(SEL) vs. selectivity SEL for m̄ = 200, ts/1� = 0.2, and different 1nc , 2nc values. Average selectivities 〈SEL〉 are
shown.  Distributions contain 10,000 SEL values (200 values per simulation times 50 simulations). (c) Graphs of survival function Fc(SEL) vs. SEL for m̄ = 200, ts/1� = 0.2, and
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ifferent nc , nc values identified as coordinate pairs. 〈SEL〉 values are represented 

anel  c, but for m̄ = 400, 1nc = 2nc = 20, and different ts/1�. (f) As in panel c, but fo
orrelation coefficient for the two-spectra case is 0.505.

rom Eq. (1).  The computation of the average SEL value is described
n detail below.

To evaluate the influence of the DAD data, chromatographic
eaks were randomly assigned to 60 UV–vis spectra generated from
rugs of abuse and toxicological relevance that were obtained else-
here [35,36].  The correlation coefficients of the spectra ranged

rom −0.30388 to 0.99998. Because the number of peaks greatly
xceeded the number of spectra, a number of peaks were assigned
he same spectrum. Spectra were randomly selected from either
he main database of 60 spectra, from a subset of 30 spectra in the
atabase, or from three pairs of spectra having a squared correla-
ion coefficient of 0.505, 0.869 and 0.925, respectively. The spectral
rofiles (contained in matrix A3) consisted of absorbances taken at

ntervals of 2 nm from 201 to 301 nm.  The SEL values of peaks in
ach 2D chromatogram were computed from Eq. (2).

.2. Calculation of multivariate selectivity SEL
For each simulation, the SEL values of all peaks were calculated
rom Eqs. (1) and (2) using the chromatographic peak profiles and
when desired) the spectral profiles described above. Calculations
id circles. (d) As in panel c, but for nc = nc = 20, ts/ � = 8, and different m. (e) As in
 400, 1nc = 2nc = 20,  ts/1� = 8, and different spectral diversity. The square of the

were implemented using Matlab 7.5.0 (Mathworks, Natick, MA)
using code described previously [7].

3.3. Calculation of average value of SEL

For each combination of m̄, 1nc, 2nc, and ts/1�, the 50 simulations
produced 50m̄ values of SEL, (i.e., m̄ values per simulation, multi-
plied by 50 simulations) from which the average value 〈SEL〉 was
computed from survival functions [37]. We  point out that although
〈SEL〉 could have been calculated simply by averaging the 50m̄ SEL
values, the survival function contains information on the distribu-
tion of SEL, which is also of interest. These consisted of the fraction
of SEL values that exceeded selectivity thresholds between 0 and 1,
with thresholds spaced by 0.001. As shown in the Supplementary
Material to this paper,  the area under this survival function is 〈SEL〉.

3.4. SOT calculations
3.4.1. General considerations
The average value 〈SEL〉 was  equated to p1 in Eq. (4).  For a given

saturation ˛, the probability p1,i in Eq. (4) was calculated from Eq.
(8), whereas the probabilities p1,e and p1,c were linearly interpo-
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Fig. 4. (a) Graph of average minimum resolution Rs* vs. saturation ˛, as calculated
from 〈SEL〉 values determined with simulations having the m̄, 1nc , and 2nc values in

1
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ated from previously calculated results for  ̨ = 0, 0.01, 0.02, . . .,
.99, and 2.00 (results available on request).

.4.2. Determination of Rs
*

The average minimum resolution Rs
* was determined as a func-

ion of saturation  ̨ with 〈SEL〉 values calculated from simulations
ased on the 24 combinations of m̄, 1nc, and 2nc in Table 1 at the
ery fast dimensionless sampling time, ts/1� = 0.2. For this ts/1�,
he average peak-broadening factor 〈ˇ〉 is essentially unity [14–18].
onsequently, the factor 〈ˇ〉 in Eqs. (6a) and (7a–c) was  set to one,

eaving Rs
* as the only unknown. Thus Rs

* was determined by an
terative bisection procedure satisfying Eqs. (3)–(8).  On completion,
ach of the 24 values of Rs

* was associated with one of the 24 values
f ˛, thus establishing the relationship between these variables.

.4.3. Determination of 〈ˇ〉
For ts/1� values between 1 and 16, 28 estimates of 〈ˇ〉 were made

sing 〈SEL〉 values calculated from simulations based on the four m̄
alues (100, 200, 300, and 400) and the seven 1nc, 2nc combinations
n Table 2. The appropriate value of Rs

*, consistent with the relation-
hip between  ̨ and Rs

* discussed in the preceding paragraph, was
sed (details are given below). For each estimate, a small trial value
f 〈ˇ〉 was assigned to Eqs. (6a) and (7a–c), such that the singlet
robability p1, Eq. (4),  exceeded 〈SEL〉. The trial value sequentially
as incremented by 0.001 (with Rs

* corrected if needed) until p1
as less than 〈SEL〉. This final trial value was averaged with the
receding trial value and assigned to 〈ˇ〉. The average and standard
eviation of the 28 〈ˇ〉 values so determined were calculated.

. Results and discussion

.1. SEL distributions

Fig. 3a–e shows several distributions of SEL calculated from Eq.
1). Panels a and b are plots of the observed frequency of occur-
ence f (SEL) as a function of the observed SEL value for m̄ = 200,
s/1� = 0.2, and various combinations of 1nc and 2nc. These asym-

etrical distributions and their average values 〈SEL〉 shift to greater
alues as 1nc and 2nc increase, and are quite different depending
n the peak capacities. In panel b, with 1nc and 2nc both equal to
, there is virtually no chance of observing a high SEL as the prob-
bility of a singlet peak is extremely small. Panel c shows these
ame results as in panels a and b, and others as well, but they are
ow plotted as the survival functions Fc(SEL) vs. SEL. As discussed in
he Supplementary Material, the survival function Fc(SEL) has three
mportant properties: it decreases rapidly where the frequency

 (SEL) is large, it decreases slowly where the frequency f (SEL) is
mall, and the area under the graph of Fc(SEL) vs. SEL is the aver-
ge value of SEL, denoted as 〈SEL〉. The coordinate pairs and filled
ircles in panel c represent 1nc, 2nc combinations and 〈SEL〉, respec-
ively. Inspection of panel c shows that the survival function and
SEL〉 value for 1nc = 10 and 2nc = 10 (solid curve) are almost the
ame as for 1nc = 5 and 2nc = 20 (dashed curve), showing that the
roduct of the two peak capacities (1nc

2nc) is controlling, not 1nc or
nc individually. The small difference is due to the edge effect. Panel

 also shows for fixed m̄,  the distribution and 〈SEL〉 shift to higher
alues as the product 1nc

2nc increases, that is, as the saturation
ecreases.

Other important trends are shown by the survival functions in
anels d–f. Panel d shows that for fixed 1nc

2nc and ts/1�, the selec-
ivity distribution and 〈SEL〉 shift to smaller values as m̄ increases,
hat is, as the saturation increases. Panel e clearly shows that for

xed 1nc

2nc and m̄,  the distribution and 〈SEL〉 shift to smaller values,
.e., they deteriorate, as ts/1� increases, that is, as under-sampling
f the first-dimension separation becomes more severe. All of the
rends observed for SEL are precisely what we anticipate for the
Table 1. ts/ � = 0.2, with 〈ˇ〉 assigned the value, 1.000. Number of UV–vis spectra:
none (�), two (�, R2 = 0.505; �, R2 = 0.869; �,R2 = 0.925), and sixty (�). (b) As in panel
a,  but with  ̨ replaced by the effective saturation ˛e .

average resolution and for the average number of singlet peaks
according to SOT.

Note all of these results were obtained without help from spec-
tral data. Panel f (computed using Eq. (2))  shows that for fixed 1nc
2nc, m̄, and ts/1�, the distributions and average 〈SEL〉 shift to larger
values as the amount of spectroscopic information is increased. On
first glance, 〈SEL〉 has a complicated dependence on m̄, 1nc

2nc, ts/1�,
and the number of spectra. We  shall show, however, that m̄, 1nc

2nc,
and ts/1� are linked simply to the saturation, as defined by Eq. (5).

4.2. Dependence of Rs
* on ˛

The average minimum resolution Rs
* (determined as per Section

3.4.2) of singlet peaks is a metric of the average interval of closest
approach between a singlet and its nearest-neighbor peak [38,39].
It differs from the traditional resolution Rs reported in Fig. 1b, which
is a freely chosen parameter. Fig. 4a is a graph of Rs

* vs. the satura-
tion ˛, as calculated from 〈SEL〉 values determined by simulations
having the m̄, 1nc, and 2nc values in Table 1, for which ts/1� = 0.2
(very fast sampling) and thus 〈ˇ〉 is assigned the value 1.000. The
assignment is reasonable, since one estimate of 〈ˇ〉  at ts/1� = 0.2
is 1.004 [16]. The simulation parameters are robust, with m̄ vary-
ing over a 4-fold range, the aspect ratio 1�/2� varying from 0.1
to 12, and the ratio m̄/(1nc

2nc) varying from 0.03125 to 15.5 (see
Table 1). Some 1nc values are unusually small (e.g., 1.61) in order

to mimic  extreme cases of under-sampling induced broadening.
Despite these variations, the results are described by simple curves
(see Fig. 4a) that differ only in the amount of spectral assistance. The
simplicity of these results strongly supports our concept that the aver-
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Fig. 5. Graph of average peak-broadening factor 〈ˇ〉 vs. dimensionless sampling
time ts/1�, as calculated from 〈SEL〉 values determined from simulations containing
100–400 peaks and having the 1nc , 2nc values in Table 2. Number of UV–vis spectra:
none (©), two  (�, R2 = 0.505), and sixty (
). Over the range, 4 ≤ ts/1� ≤ 16, the slopes
of  lines determined by weighted fits are 0.48 ± 0.03, 0.45 ± 0.02, and 0.43 ± 0.02 for
0,  2, and 60 spectra, respectively. Also shown are results calculated with SOT from
J.M. Davis et al. / J. Chroma

ge multivariate selectivity equals the probability of observing singlets
s predicted by statistical-overlap theory.

Without spectral help (see solid circles in Fig. 4a), Rs
* is almost

ndependent of  ̨ and has a value of 0.276 ± 0.007. This is almost
ne-half the value, 0.5, needed to separate two  bi-Gaussians of
qual height and standard deviation as two  distinct maxima,
nd the low value shows the average improvement of separa-
ion achievable when using selectivity. As spectral assistance is
ncreased by increasing the number of distinct spectra that can
e assigned to different chromatographic peaks, the limiting Rs

*

t zero saturation decreases because the spectra provide more
nformation, leading to better resolution. Upon increasing the sat-
ration, Rs

* decreases further because the spectral information
ecomes a more powerful way to increase the selectivity, when
eak overlap is high than when it is low. As the variety of included
pectra is increased Rs

* improves even further, because the ran-
omly assigned spectra of nearest-neighbor peaks are more likely
o differ. However, the improvement has a limit; the ˛–Rs

* rela-
ionship for 60 spectra (filled triangles, with downward apices) is
tatistically no different than that for 30 spectra (results not shown
or graphical simplicity). This happens because even though the
umber of differing spectral responses in the whole data set is
mall, the probability of adjacent, overlapping peaks having the
ame spectral response is even smaller (e.g., if n spectra are ran-
omly assigned, the probability of two adjacent peaks having the
ame spectrum is 1/n2, which is very small even for modest n).
hus, the addition of more spectra produces only minor improve-
ents. Furthermore, the limit on Rs

* occurs because the UV spectra
rovide rather limited information, e.g., the average width of UV
bsorption bands is relatively large (∼20 nm)  and a relatively nar-
ow spectral range (201–301 nm)  is used here. An improvement of
s
* is found even with only two spectra, but the numerical value of

s
* at any  ̨ varies with the square of the correlation coefficient R2

f the spectra (and therefore the SEL of the spectra). Clearly, the less
orrelated are the spectra the greater is their information content,
hus improving the SEL and also Rs

*. Three cases are shown where
nly two spectra are assigned randomly to each of the peaks, with
2 equaling 0.505, 0.869, and 0.925. The further improvement of Rs

*

up to a limit) is expected as R2 approaches zero. As R2 approaches
nity (i.e., the less is the information), the ˛–Rs

* relationship begins
o approach that without spectral help.

The saturation ranges (i.e., the magnitude of the horizontal coor-
inate in Fig. 4a) of these relationships vary, because the saturation
˛) itself depends on Rs

* (see Eq. (5)). A recently introduced metric,
he effective saturation ˛e, absorbs Rs

* and allows one to express
OT predictions by the traditional metrics of resolution and peak
apacity [27]. For a comprehensive 2D separation with first- and
econd-dimension peak capacities having traditional resolutions
f unity (e.g., as in Eqs. (6b) and (6c))

e = 4˛

�(R∗
s )2

= m̄

n′
c,2D

=
m̄
〈

ˇ
〉

1nc
2nc

(10)

Fig. 4b shows the same Rs
* values in Fig. 4a but expressed rel-

tive to ˛e. Here, n′
c,2D equals 1nc

2nc , since
〈

ˇ
〉

= 1. The ˛e range

s the same for all ˛e–Rs
* relations, because the same 1nc and 2nc

alues are used. Fig. 4b shows that Rs
* is useful for interpreting

he chemometrically enhanced separations having peak numbers
¯ exceeding the corrected 2D peak capacity n′

c,2D (defined at unit
esolution) by up to 15.5-fold. We  consider these to be rather highly
ffective saturation factors and very crowded chromatograms.
.3. Determination of 〈ˇ〉

The expectation that the ˛–Rs
* relationships in Fig. 4a apply to

nder-sampled separations was justified in another study, where
the number of maxima in simulations of randomly positioned peaks with equal
heights (×).

a similar relationship was used to predict average numbers of
peak maxima [16]. The ˛–Rs

* relationships for help from zero, two
(R2 = 0.505), and sixty spectra were used to calculate the average
peak-broadening factor 〈ˇ〉 from 〈SEL〉 values determined by simu-
lations having the m̄,  and 1nc and 2nc, values in Table 2. The value
of ts/1� ranged from 1 and 16. As before, the simulation param-
eters are robust, with m̄ and 1nc varying over 4-fold ranges, 2nc

varying over a 16-fold range, and the aspect ratio 1�/2� varying
(prior to sampling) from 0.125 to 8. The values of 1nc and 2nc are
representative of those in LC × LC. For the case of no spectra, Rs

*

was assigned the constant value, 0.276; for two  and sixty spectra,
Rs

* was  described by quadratic fits to the graphs in Fig. 4a, with
the appropriate (˛, Rs

*) coordinate determined by a bisection algo-
rithm. Fig. 5 is the graph of 〈ˇ〉 vs. ts/1� so determined. Each 〈ˇ〉
is the average of 28 determinations. Standard deviations are not
shown to avoid clutter but the data are precise; the largest RSD
is 10.1%. Also shown are 〈ˇ〉 values calculated using SOT from the
number of peak maxima in simulations of comprehensive 2D sep-
arations with randomly positioned peaks of equal height. These 〈ˇ〉
values were determined in a similar (but not identical) manner to
that reported elsewhere [16]; the details of the determination are
lengthy and will be described in a subsequent publication [40]. The
results are described well by the empirical equation [16]

〈
ˇ
〉

=
√

1 + �
(

ts
1�

)2
(11)

with � = 0.23 ± 0.01. For simplicity, the results are called maxima-
based 〈ˇ〉 values to distinguish them from those determined from
〈SEL〉, i.e., 〈SEL〉-based 〈ˇ〉 values.

At any ts/1�, the 〈SEL〉-based 〈ˇ〉 values are strikingly similar to
the maxima-based 〈ˇ〉 values in our original study [16]; further-
more, they vary only slightly with the amount of spectroscopic
assistance (i.e., number of spectra). However, subtle differences
do exist. Eq. (11) gives a poorer fit to the 〈SEL〉-based 〈ˇ〉 values,
which are slightly smaller than the maxima-based 〈ˇ〉 values at
any t /1�, as shown in Fig. 5. The poorer fit is not surprising. As
s

shown by Blumberg and co-workers, Eq. (11) has a theoretical basis
if the sampled first-dimension peak profile is represented by line
segments connecting the average sample concentrations and if �
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Fig. 6. Graph of fraction of peaks that are singlets, s/m̄,  vs. effective saturation ˛e , as
calculated from 252 〈SEL〉 values determined by simulations containing m̄ = 100 to
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¯  = 400 peaks and having the nc , nc values in Table 2. Number of UV–vis spectra:
one (©), two (�, R2 = 0.505), and sixty (
). Also shown are theoretical results for
xpected fraction of peaks appearing as maxima of single compounds (♦).

as the value, 1/4 [17,18]. However, the multivariate-selectivity
alculation is not based solely on the first-dimension profile.

Another difference is that at large ts/1� the limiting slopes
f graphs of 〈ˇ〉 vs. ts/1� decrease slightly but significantly with
ncreasing numbers of spectra. These slopes are reported in the cap-
ion of Fig. 5. However, the differences among the slopes are small,
uch that at high values of ts/1� the number of spectra has only a
mall effect on 〈ˇ〉. The principal conclusion obtained from Fig. 5
s that the � value does not vary substantially with the amount of
pectroscopic help and thus the hypothesis of Potts et al. [19] that
ˇ〉 might be less dependent on ts/1� is essentially false.

.4. Improvement of separation by selectivity

Fig. 6 gives the fraction of peaks that are singlets, s/m̄,  vs. the
ffective saturation ˛e. The three data sets represented by triangles,
quares, and circles are equal to the 252 〈SEL〉 values used to deter-
ine the 〈SEL〉-based 〈ˇ〉 values, with and without spectral data

ssistance. As shown by Eq. (9),  〈SEL〉 is approximately equal to s/m̄.
he data sets are grouped according to the number of spectra; there
s a slight scatter about otherwise smooth curves because of the
dge effect. First and foremost we see that as the amount of spectral
elp is increased the fraction of the peaks that can be interpreted as
inglets increases. The increase is greater at higher effective satu-
ation. However, as the spectral diversity increases, s/m̄ decreases
ess rapidly with ˛e, because Rs

* decreases with spectral assistance
see Fig. 4) and causes ˛e (which varies inversely with (R∗

s )2 per Eq.
10)) to increase rapidly.

Also shown are SOT predictions of s/m̄ for these 252 combina-
ions of 1nc, 2nc, and ts/1�, when s/m̄ is  interpreted as the fraction
f peaks appearing in the separation as maxima produced by sin-
le compounds (diamond symbols in Fig. 6). A singlet maximum
s the classic way of identifying singlets in chromatography. This
alculation was made by approximating 〈ˇ〉 with Eq. (11) and using
he recently predicted ˛–Rs* relation for singlets in a 2D separation
f randomly positioned peaks having an exponential distribution of
eights [39] (for this height distribution, the coefficient � in Eq. (11)

s 0.21 [16]). These predictions would be more relevant if all peak
eights were equal, but SOT currently can make such predictions

nly at very low effective saturation.

Relative to the fraction of singlet maxima, it is apparent that
SEL〉 quantifies the vastly improved number of signals that can be
nterpreted as singlets. As an example, for an effective saturation of
A 1218 (2011) 5819– 5828

2  (i.e., n′
c,2D = 100 and m̄ = 200), selectivity with no added spectra

allows detection of about 120 singlets out of 200 peaks; in con-
tradistinction based on counting the peak maxima only 20 or so
singlets are detected. Even more improvement is achieved when
spectral information is added.

4.5. Interpretation and importance of results

Fig. 4 shows that the application of multivariate selectivity to
comprehensive 2D separations greatly reduces the average mini-
mum  resolution required for a separation; it reduces this resolution
even further upon addition of spectral data. The result of this reduc-
tion of resolution is an improvement of separation beyond that
possible when only peak maxima are detected, as shown in Fig. 6
(see diamonds). In the present work, we describe the improvement
in the separation upon addition of spectral assistance as taking
place through the reduction of the average minimum resolution
(Rs

*) needed to detect singlets. Previously, the addition of mass-
spectral data to 2D separations was interpreted as equivalent to
adding a third dimension of peak capacity [41–43].  However, this
interpretation is not possible with our two-dimensional model of
peak overlap. We  believe that ours is the more physically realis-
tic interpretation, since the collection of spectra does not actually
transport peaks into different regions of space (i.e., does not cause
separation). In our view the spectral data simply allow individ-
ual peaks to be identified as such at lower values of the average
minimum resolution. The improvement of separation by the spec-
trally induced reduction in resolution, i.e., the consequences of the
decrease of Rs

*, is evident in Fig. 6.
In contrast, Fig. 5 shows that selectivity has only a small –

not quite negligible – effect on the average first-dimension peak-
broadening factor resulting from under-sampling, either with or
without spectral assistance. Consequently, it also has only a small
effect on the corrected 2D peak capacity, Eq. (6a). This is useful to
know, since the corrected peak capacity is a critical issue in optimiz-
ing on-line comprehensive 2D separations. For example, it causes
the existence of the optimal second-dimension cycle time [19,44].
Several studies have shown that increasing the sampling time (i.e.,
the collection time of first-dimension effluent, which in on-line 2D
separations is equal to the second-dimension cycle time) initially
increases and ultimately limits the second-dimension peak capac-
ity. However, it always decreases the corrected first-dimension
peak capacity 1nc/

〈
ˇ
〉

, such that an optimal sampling time and
maximum in the plot of corrected 2D peak capacity vs. sam-
pling time must exist in on-line comprehensive 2D separations
[19,44,45].

Fig. 6 shows that the fraction of singlets always increases as the
effective saturation decreases, although the fractions differ for SEL
and peak-maxima singlets, and as the amount of spectral assistance
varies. Since the corrected peak capacity varies inversely with the
effective saturation (see Eq. (10)), the fraction of singlets always
increases with increasing values of the corrected peak capacity.
Therefore, the optimization of the corrected peak capacity, with
a peak-broadening factor approximated by Eq. (11), should give
the greatest fraction of singlets in a comprehensive 2D separation,
at least when peak positions are random and the fractional cover-
age [46] (the fraction of the corrected peak capacity that is used) is
constant. Neither the means of singlet evaluation (SEL or maxima)
nor the amount of spectral assistance (some or none) significantly
changes the value of the optimal corrected peak capacity; they only
change the fraction of singlets found at that optimum.

While the selectivity values calculated in the present work

reflect the specific results expected with an analysis of the data
with the PARAFAC algorithm under ideal conditions, we believe
that the trends observed here would still be observed with differ-
ent selectivity metrics. The actual form of the selectivity calculation
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sed here is quite robust, unlike some of the other selectivity met-
ics reported by Olivieri [22], so that as a relative measure, if not
n absolute one, we feel that the SEL offers a simple measure of
he performance of a chemometrically assisted separation. This is
ot to say that SEL is the only metric by which the interpretation
f multi-component separations can be improved. Other metrics,
.g., ones based on information theory [47] and separation quality
48], are also useful. However, SEL is unique in its interpretation as

 singlet probability, which fosters a close connection with SOT and
he parameters (e.g., Rs

* and 〈ˇ〉) on which it depends.
Our results should not be overinterpreted; they are based only

n randomly positioned peaks of equal height. Although Eq. (11)
ppears to work well with weakly correlated peaks having expo-
entially distributed heights [49], it is unlikely that the average
inimum resolutions in Fig. 4 work well with non-randomly posi-

ioned peaks. Rather, they are specific to randomly positioned
eaks. It is probable that with non-randomly positioned peaks the
alue of (but not the trends in) Rs

* will change, with its exact value
etermined by the amount of retention-time and spectral correla-
ion. Also, it is clear from the three different degrees of correlation
or the two-spectra cases shown in Fig. 4 that Rs

* varies with the
mount of spectral correlation. From a chemical perspective it is
ossible that the spectra of nearest-neighbor peaks in experimental
D separations will be more similar than considered here, because
he neighboring peaks are probably chemically more related than
re more remote peaks. However, it is not the exact value of these
etrics that is relevant here but their trends: the average minimum

esolution measured by using SEL values is much more dependent
n the spectral assistance than is the broadening caused by under-
ampling.

An alternative approach for assessing the reliability of detec-
ion of a target compound in a mixture has been described by
toev et al. [50–52].  In that work, the peak capacity and the singlet
robability were used to calculate a probability of successful iden-
ification of a target compound in a specified mixture. The power of
AD and mass spectrometric (MS) detection was compared using

 grid approach for finding characteristic points in the spectra. It
as found that for the specific example of detection of antifungual

gents, the probabilities of identification of LC–DAD and LC–MS/MS
low resolution) were very similar [52]. Based on the data provided,
ince the chromatographic peaks were very well resolved for the
ost part, it is likely that SEL values would be close to one in both

ases, leading to a similar conclusion. The real challenge comes
n evaluating more complex mixtures, such as described here. It
hould be noted that this calculation does not take into account
ther factors, such as ionization interferences and irreproducibility
f signals that can affect electrospray MS  detection.

Because MS  is so commonly coupled to chromatography, we
hink it is important to extend the multivariate selectivity con-
ept and SOT-based interpretation to simulated chromatograms
ssisted by MS,  with an emphasis on understanding the differences
mong Rs

* and 〈ˇ〉 values for MS  and DAD. Unlike DAD, the informa-
ion content of MS  varies greatly with the instrumentation, whose
esolution can be low (e.g., mass selective detection) to extraor-
inarily high (e.g., Fourier transform ion cyclotron resonance). Of
articular interest is evaluating the dependence of the asymptotic

ower limit of Rs
*, which is found at high spectral diversity, on the

esolution of the MS  instrumentation.

. Conclusions
Unless otherwise stated, these conclusions apply to chro-
atograms with randomly positioned peaks of equal height, with

nd without spectral assistance from DAD.

[

[
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1. We have shown that our results are consistent with the concept
that all chromatographic peaks have both singlet and multiplet
character, and the fractional singlet character of any peak is equal
to the multivariate selectivity SEL.

2. The average multivariate selectivity 〈SEL〉 of all peaks closely cor-
responds to the fraction of singlet peaks predicted by SOT, i.e.,〈

SEL
〉

≈ s/m̄ (Eq. (9)).
3. Without UV–visible spectral assistance, the multivariate selec-

tivity of 2D separations provides an average minimum resolution
Rs

* to be used in SOT that is about twofold smaller (0.276) than
that needed to see two maxima (0.5).

4. The addition of spectral assistance when using multivariate
selectivity as measured by the SEL metric improves Rs

*, espe-
cially when the chromatogram is crowded and peak overlap is
severe (i.e., when the saturation  ̨ is high).

5. Increasing the spectral diversity improves Rs
* even further but

there is a limit that cannot be exceeded dependent on the char-
acteristics of the spectra.

6. The average peak-broadening factor 〈ˇ〉 is about the same,
whether it is determined by counting peak maxima or by using
multivariate selectivity. Spectral assistance has only a small
effect on 〈ˇ〉.

7. The near independence of 〈ˇ〉 from its means of evaluation sim-
plifies the optimization of the corrected 2D peak capacity in
on-line comprehensive 2D separations.

8. The general trends, if not the exact values, found here for Rs
*

and 〈ˇ〉 apply to chromatograms with non-randomly positioned
peaks of unequal height.

9. The use of multivariate selectivity greatly increases the like-
lihood of evaluating peaks as singlets. For example, with a
corrected 2D peak capacity of 100, 120 or more of 200 peaks
can be identified as singlets, whereas only 20 maxima can be so
identified.

In future work we will compare the improvement brought about
by DAD spectra and by mass spectroscopy of various resolving
power.
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